Universal contact-line dynamics at the nanoscale.
نویسندگان
چکیده
The relaxation dynamics of the contact angle between a viscous liquid and a smooth substrate is studied at the nanoscale. Through atomic force microscopy measurements of polystyrene nanostripes we simultaneously monitor both the temporal evolution of the liquid-air interface and the position of the contact line. The initial configuration exhibits high curvature gradients and a non-equilibrium contact angle that drive liquid flow. Both these conditions are relaxed to achieve the final state, leading to three successive regimes in time: (i) stationary contact line levelling; (ii) receding contact line dewetting; (iii) collapse of the two fronts. For the first regime, we reveal the existence of a self-similar evolution of the liquid interface, which is in excellent agreement with numerical calculations from a lubrication model. For different liquid viscosities and film thicknesses we provide evidence for a transition to dewetting featuring a universal critical contact angle and dimensionless time.
منابع مشابه
Power-law slip profile of the moving contact line in two-phase immiscible flows.
Large-scale molecular dynamics (MD) simulations on two-phase immiscible flows show that, associated with the moving contact line, there is a very large 1/x partial-slip region where x denotes the distance from the contact line. This power-law partial-slip region is verified in large-scale adaptive continuum calculations based on a local, continuum hydrodynamic formulation, which has proved succ...
متن کاملDynamic contact angle of water-based titanium oxide nanofluid
This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading,...
متن کاملMolecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model
We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...
متن کاملWetting at the nanoscale: A molecular dynamics study.
A novel method to calculate the solid-liquid contact angle is introduced in this study. Using the 3D configuration of a liquid droplet on a solid surface, this method calculates the contact angle along the contact line and provides an angular distribution. Although this method uses the 3D configuration of liquid droplets, it does not require the calculation of the 3D density profile to identify...
متن کاملNanoscale wetting on groove-patterned surfaces.
In this paper, nanoscale wetting on groove-patterned surfaces is thoroughly studied using molecular dynamics simulations. The results are compared with Wenzel's and Cassie's predictions to determine whether these continuum theories are still valid at the nanoscale for both hydrophobic and hydrophilic types of surfaces when the droplet size is comparable to the groove size. A system with a liqui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 11 48 شماره
صفحات -
تاریخ انتشار 2015